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The time behavior of two-dimensional flows of inviscid gas in which the velocity 
component normal to the plane of independent variables and the vorticity components 
parallel to this plane are different from zero, is investigated. Equations of such 
flows form two different subsystems. The first subsystem describes a plane parallel 
("primary") flow without the third velocity component, and is independent of the 
second subsystem consisting of a single equation for the third velocity component 
and determining the "secondary" flow. The flows are analyzed with sufficientdetail 
without using nunerical integration which carries with it unavoidable errors, and 
without linearization, both of which are employed to a lesser or greater degree in 
the studyofthe evolution of Qorticaf structures (see jl-6/). 

At the same time, the simplicity of the flows in question makes it easy to demonstrate 
the apparently very general, although not at all obvious properties of such a "determinate" 
system as the system of Euler equations. Such properties include the unlimited growth of 
vorticity, the appearance of tangential discontinuities not caused by the intersection of the 
shock waves, and "poor predictability" /4/. The above properties, which appear no matter how 
smooth the initial distributions, are connected with the kinematics of the fluid filaments. 

Three types of primary flows are considered. Those depending on two coordinates 2 and 
Y and an time t; the one-dimensional nonstationary flows depending on z and t buthavingtwo 
velocitycomponents,and two-dimensionalstationaryflowsdependingon f: and y only. Thesecond- 
aryflow (third velocity component) alwaysdependson z, II and t. In the first case an approach 
developedin/?/isusedtoshow theunlimitedgrowthofvarticityalongcertain trajectories be- 
longing tothe flow boundary, Foraplaneparallelflowofan incompressible fluidananaloqous 
resultisestablishedin/'?/ forthegradientofthe unique componentof varticity, andinthe case 
ofathree-dimensionalflowfor the vortex itself, although un&ertbe condition thattheparticle 
trajectory is rectilinearandbelongsto the planeboundary. Ifthepximaryflowisone-dimensional 
or stationary, thenthe finite relationships obtainedbelow describetheevolution ofthevorticity 
(inthis case itsunlimited growthwith tjr*~) i?Or thewhd.e fl5W. Anexampleshowingtheappearance 
ofatangential discontinuityisconstructedfora stationaryprimary flaw. In addition, a flow is 
constructedwitharbitrarilysmoothinitial data, inwhich anythree-dimensional moments (correla- 
tion functions) aredifferent fromzeroonlyonthesetswithseromeasure. 

1. I&Let q denote the velocity vector , p the density and p the pressure of the gas, and 
F the external mass force. Then the equation of motion of an inviscid compressible or in- 
compressible medium will have the form 

dq / dt = --p-'Vp + F (d / dt =I 0 1 at + qV) (1.1) 

where d/& denotes the total derivative in t along the trajectory of gas particles. If F = 
-VU, i,e, if the force is potential and the medium is two-parameter and, as in the case of 
thermodynamic equilibrium Tds = di - (1 /p) dp where T is the absolute temperature, s is the 
specific entropy and i specific enthalpy, then (1.1) can be rewrittenin the form 

aq/ at - q x w = TVs- VI (1.2) 

(0 = v x q, ZI = 25 + q2 -+ u, q = I q I) 

Taking the operation rat of (l-2), we arrive at the Hehhofz equation in the form 

d~fdt-VTrV~+(~V)q--Vq ff.3f 

The equations (l.lt- (1,3) hold even when no longer dependent on the concrete farm of the 
energy equation. Moreover, even the passage to the equation 

do/&=(oV)q--Vq (1.4) 
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which from now on will replace (1.31, does not impose sufficiently rigid restrictions on the 
form of the energy equation. Indeed,replacing (1.3) by (1.4) is valid for any "barotropic" 
flows the realization of which by no means requires the necessary absence (together with the 
viscosity) of heat conductivity and other dissipative processes. Thus the equation (1.4) holds 
for the isothermal flows realized, in contrast, in the presence of an intense supply (or 
removal) of heat. For an incompressible fluid, (1.4) with Vq = 0 represents the result of 
(1.1) in the presence of an external potential force. In the case of collisionless flows of 
perfect (inviscid and non-heat conducting) gas, their isentropic character and equation (1.4) 
are the natural consequences of the energy equation and the homogeneous initial fields of s. 

We restrict the further analysis to the two-dimensional, non-plane parallel flows the 
all parameters of which axe independent of the coordinate z of the Cartesian zyz -coordinate 
system. If u, u and w are the projections ofq on its axes and w,. wy and o, the analogous 
components of 0, then we have for such flows 

w X==aw/ay, ou= aw 1 ax, w, = ~VJ ax - a~/ ay (1.5) 

LetV denote the projection of q on the xy -plane. Since wis independent of Z, it follows 
that Vq = VV and the complete equation of continuity is reduce to the equationofcontinuity 
for the primary plane parallel flow, i.e. 

dP I dt -t pVq E dp / dt + pVV = 0 (1.6) 

The passage from the first to the second version of (1.6) represents one of the prerequisites 
which make possible the decomposition of the flow into the primary and the secondary subflow. 
The previous premises come to the absence of win the energy equation (this is the case of 
the perfect gas) and to the independence on w of the projections F, and Fv of the force F on 
the axes X and y. Finally, F is independent of z in the flows considered, and the equation 
describing the secondary flow, i.e. the projection of (1.1) on the z-axis, has the form 

dw / dt = Fs (1.7) 

When F, = 0, (1.7) implies that w is preserved in the particle. 

2. First we shall see how o varies along the trajectories lying on the fixed impermeable 
boundaries. To do this we introduce, at every point of the boundary , a set of three unit vec- 
tors z,n, andk where k is collinear with the z-axis, r is tangent to the boundary (the 
directions of r and Vcoincide) and n is normal to the boundary. We denote the projections 
ofwon r andn by wg and 0,. The equation of continuity /1.6/ in the variables tn assumes 
the form 

Vq E VV =_ 8V f az -+ Vaft / an = -p-‘dp J dt 

where V = 1 V 1 and d is the angle between V and the x-axis. Taking this into account, we 
obtain frcPn (1.4) the following equations: 

do, f dt = o&W / & -+ (a, / p) Cap f dt + a,, (2VK - w,f (2.1) 
da, f dt = --w,aV f a-f, do, f dt = (w, 1 p) dp f dt 

where K = (aS I&),,, is the curvature of the boundary. The last equation yields the known 
integral 

@z = %oPIPo (2.21 

in which the index zero denotes the quantities at the point at which the particle was present 
at t=O. According to (2.2) the vorticity of the primary flow is independent, as it should 
be, of the secondary flow. In contrast, the vorticity of the secondary flow depends on the 
parameters of the primary flow. 

Let us combine the first equation of (2.1) multiplied by o,, with the second equation 
multiplied by mrr and then use the equation of continuity to eliminateVV = aV/ & + Vl@f&, 
while from the equation (2.2) to eliminate .w%. This yields 

(2.31 

in which X is defined in terms of the parameters of the primary flow. Let us assume that x 
never vanishes along the trajectories under consideration. This will be true when wzOpO, 
e.g. on the plane boundaries where K = 0 and x =const, and not only on these boundaries. In 
such cases we can write (2.3) in the form 

dffg) I dt = f", f = @,,m g = (0% sign xf I (pm) (2.41 

The components mr and o,, connected with 0% and o,, by the equations 



characterize, according to (1.5), the vorticity of the secondary flow. Sincethis flow does 
not affect the primary flow, it follows that the initial (at t = 0) distribution w (5, y,O) = 

mo (57 Y) I and as a result the values e 0 and con0 at the initial point of the trajectory do 
not affect x and p along this trajectory. Choosing the function wO(z,y) arbitrarily, we 
choose it such that the product fog,% ~ro~,o(sigrl x)/ p. is positive at the initial point. Then 
by virtue of the lemma proved in /7/, p + B? and hence (for O<lxl<N< 00 which holds, 
as a rule) wz2 + on2 , grows indefinitely as t-t 00. Since in the cases already considered 
the trajectory is curvilinear for V+ const even when K = 0, it follows that the situation 
described here differs from the example in /7/ where we have a rectilinear trajectory on a 
flat wall. 

3. If the primary flow with u and u different from zero is one-dimensional, i.e. all its 

parameter are functions of x and t only, then the variation in o can be easily followed for 
all particles and not only for those moving along the impermeable boundaries. Indeed, let 
w =w (x, y, t) and the remaining parameters be independent of y. By virtue of (1.1) thismeans, 
in particular, that F, and Fg are independent of y although F, may be a function of y also. 
Restricting ourselves to the case of potential force we find, in accordance with (1.4) and 
(1.6), that for the one-dimensional primary flow 

do, / dt = 0, do, / dt = oxoz + (q, I p) dp f dt 

and (f)z satisfies (2.2). This implies that 

0 x= 0x0, my = (my0 + %Xl%ot) P /PO (3.1) 

The first of the equations obtained becomes obvious by considering an elementary fluid 
area S belonging, at t = 0, to some plane x =x,,. In the flow in question such an area ele- 
ment remains flat and retains the orientation of the normal, and its area, although it changes 
its form. This, and the invariance of the circulation along the contour S, together yield 
the first equation of (3.1). According to (3.1) and (2.2), w, and w, in the particle are 
bounded in the case of aone-dimensionalprimaryflow,( w, 1 increases proportionally to p) and 
1 a+, ) increases with t for wrO~oz,, #O almost linearly (with the accuracy of up to the varia- 
tion in p). 

4. Let us now assume that the primary flow is plane parallel and stationary. Thenevery 
of its streamlines can be regarded as an impermeable boundary for which the equations (2.1)- 
(2.4) hold and imply the unbounded growth of 1 w 1 with t when w~~w,,~ sign x> 0. Moreover, in 
this case as in Sect.3, we can derive explicit formulas which yield, together with (2.2), the 
description of the variation in all components of the vorticity along the particle trajectory. 
Indeed, by virtue of the stationary character of the primary flow Wfar=(dVldt)lV, and 
this enables us tointegrate,first the second equation of (2.1) , and then use this integral 
and (2.2) to integrate the first equation of (2.1). As a result we obtain 

(4.1) 

Here X is the same as in (2.3), with its first term depending on 'c in x and the second term 
on 70' The first equation of (4.1) can also be obtained by considering, as analogy in Sect. 
3, the kinematic of the elementary fluid area element of the primary flow. Since the depend- 
ence of t on 'c is given in this case by the equation 

c 

t= dr s v CT) 
To 

(4.2) 

and all parameters of the primary flow are known functions of T, it follows that (2.2), (4.1) 
and (4.2) together describe the evolution, in time, of all components of the vorticity. Thus 
w, increases without bounds only on the streamlines arriving at the critical pointsnearwhich 
v (r) r;= v, - a(7 - zO) with the positive constant cc. According to (4.2) and (4.1) we havehere 
V zz V,e-=t , and 

o,z=z O,& (rt , co%= -(0,&0 / (24) eat (4.3) 

The accuracy of (4.3) increases with increasing t and with the approach of the initial point 
towards the critical point. 

In the general case oc is a very complicated function of t. However if, as it happens 

in most cases, the integral in (4.1) diverges as z--t 00, then 1 or ( grows without bounds as 
t-t m , although not necessarily monotonously. Here the sign constancy of i( is not required, 
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although it formed a necessary element of the proof carried out in Sect.2. 
As an example we shall show how ol: varies along the trajectories which correspondtothe 

closed streamlineswithoutcritical points. We can write (4.11 for them in the form 

o+ (G = (P (N + Q, (01R (t") (4.4) 
$0 

n=[t/T], tn=t--nT, R=pV, 0((P) =ii OnJo 
s 
$# dt” 

0 

Here T is the period (time of a single circuit along the streamline), [fl denotes theintegral 
part of f, the relation connecting 5 with t, following from (4.2f, is assumed known (in 
(4.4) it is sufficient to know this connection for a single period). The curly brackets con- 
tain the sum of the step function F and the discontinuous function Q, periodic in t. The 
discontinuities in Q, caused by the step-wise decrease in the value of to from T to 0 at the 
end of every period in t, are compensated by the jumps in F. As a result, the sum within 
the curly brackets yields a continuous function of t which executes periodic oscillations ab- 
out the straight line or= F(t!T). The continous t-periodic function R does not bring funda- 
mental changes in the behavior of o,(t), and acts as a modulating multiplier. For the trans- 
lational flow with shear, a flow induced in an unbounded space by a single vortex filament 
and for a Couette flow between coaxial rotating cylinders (as we know , this flow satisfies 
the Euler equations), the "primary" parameters on each streamline are constant. Here we have, 
by virtue of (4.1) and (4.2), 

0% w = COT0 -I- On0 (2VK - e*)ot 

witho* and fr),, unchanged in accordance with (2.2) and (4.1). 

5. The unlimited growth of vorticity, i.e. of the derivatives of the velocity vector 
components, indicates the possibility of appearance of tangential discontinuities in the in- 
itially arbitrarily smooth liquid or gas flows , and demonstrates the "poor predictability" of 
the nonstationary vertical flows. Using the two-dimensional non-plane parallel flows we con- 
struct examples illustrating the properties in question more clearly than in Sect.2-4. 

We begin the appearance of a tangential discontinuity. We take as the primary flow the 
plane parallel stationary attached flow past a sufficiently arbitrary nonsymmetric two-dimen- 
sional body immersed in a uniform incoming stream at F=O. If the particles in such a flow 
were to pass from the leading stagnation point to the trailing stagnation point along the 
upper and lower generatrix in different, finite times t+ and t_, then the tangential discon- 
tinuity at ~~~(~,y)#;const would appear behind the body after a finite period of time, This is 
obvious, since at F= 0, U) is retained by the particle according to (1.7), and with the times 
t+ different and finite, the particles possessing different to in the incoming flow would 

encounter each other behind the body after a finite time. The body can be replaced by a 
cylindrical "bubble". In the flow past this bubble, which could be symmetrical, the tangent- 
ial discontinuity with finite 4 would appear after a finite time at the boundary streamline 
of the bubble (the particles from the incoming flow do not penetrate the interioroftbebub- 
ble). 

The finite character of the times t* which played such an important part in the above 
discussion does not manifest itself in practice. Therefore at any t<w the discontinuity U, 
is replaced in the above cases by a transitional layer of thickness &)I the thickness rapidly 
decreasing to zero as t-m, According to (4.2) we have in a flow pass a body or a stationary 
bubble c) ,C-=* where the positive constants a determine, as in (4.31, the velocity field of 
the primary flow near the critical points. 

Let us now construct a flow for which the spatial moments (correlation functions) charact- 
erizing in some sense the degree of order (or the lack of it) in the nonstationary flow can 
be calculated very simply, We take as the primary flow the stationary Couette flow between 
two coaxial cylinders of radius r_ and r, respectively, with OBr_<r+6ar. The streamlines 
is such a flow satisfying, as we said before, the Euler equations, are concentric circles, 
and when p~ceons~, the only velocity component (peripheral) is V= V(r)=&+&-1 where r is 
the radial variable in the polar ~9 coordinates in the plane of flow with the origin on the 
axis of the cylinders, while A and 3 are constants related to the rates of rotation of the 
cylinders. In what follows, the only important aspects are the facts that v is a function of 
r only, and the angular velocityPr V/r+conat. Let s~(r,cp) be the initial distribution of 1~. 
Then from (1.7) with Ps= 0 we find that in the present case 

w (6 cp, 2) = %I (r, 0 - Qtt (5.1) 

Since WI is a k-periodic function ofthe second argument, then by virtue of (5.1) the follow- 
ing formula holds for the mean value tw, = w: 
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W (r~ CPI to) &” = 6, (r) = & i w. (r, (p) ,iq 

where 6,, is the zero coefficient of the expansion of w~(r,cp) into a Fourier series in 8. This, 
together with (5-l), yields the following expression for the nonstationary part of W, i.e. 
for the pulsation W'EW-_w: 

m 

w'(r, cp, t) = z 
(all(r) sinn (cp - Rt)+ 6,, (r)coan(q - Qt)) (5.2) 

,,=I 

1 San 

an (r) = x s 
w. (r, rp) sin ncp dq, 6Jr)4 mu (r cp) cm “‘P dv 

0 ” 

Let us take in the w -plane two points, M and MO, with coordinates r,cp and r".cp" re- 
sepectively, and let us find a two-point moment (correlation function) of second order, de- 
pending also on the temporal shear r and equal, by definition, to 

Substituting here the expressions (5.2) for the pulsations, multiplying and calculating the 
integral, we obtain 

2BW,D = I ((%A" i 6,6k") cos CD- + (~,ZJ~~ - 6,ae') sin CD-1 + (5.3) 
E I(6,6a" - a,ar;") cos a+ _t (a,bk'+ b,,ak') sin UJ+] 

(a* = “‘p & kq” r kS2%) 

Here o,,, b,,,Q are the same functions of r as in (5.2), while ati", bk”,OO are the same functions 
of '0, and the sums are taken over the positiveintegersn and k, which satisfy, forthegiven 
r and P, the conditions 

nQ (r) ‘f kB (P) = 0 (5.4) 

where the minus (plus) sign corresponds to the first (second) sum in (5.3). 
Let the point&l be fixed. Then B,w will be a function of M" and r only. Moreover,since 

the summation in (5.3) is carried out not over all positive integral n and h, but only over 
those satisfying (5.4), it follows that for a fixed r the moment B,,,=O almost everywhere in 
the annulus r- < 9 < r+. The exception is the set of null measure representing a collection of 
circles on which the ratio of the angular velocities Q(r)/Q(P)= frill k as well as the corres- 
ponding coefficents in the expansion (5.2), are not zero. If, e.g. the angular velocity 9 
does not change its sign when r_drQr+ and UN (r, cp) = 60 (r) + % (r) ain cp + 61 (r) ~0s 9, then B,, + 0 

only on the circle 4 = r. Analogous results are obtained for the two-point, three-point, etc. 
moments of not only the second, but also of the higher orders. 

We emphasise that the latter by no means implies the chaotic (turbulent) character of 
the flow in question, and even of the fields w'. In fact, the primary flowinthe above ex- 
ample is laminar in the usual sense, the dependence of w'on the coordinates and time is by 
virtue of (5.1) fully determined, and the trajectory of each particle is a spiral line. We 
note that if the primary flow is stationary, here as well as in Sect.4, then the complete and 
the linearized (with reference to the stationary flow) equations for 1LV, o, and my or for or 
and o, do not differ from each other, and w can always be regarded as a "label" which identi- 
fies the particles like a spot of dye. The only difference lies in the fact that the dye 
concentration must be sufficiently low so as not to affect the density of the medium, while 
the quantity IL' in all flows in question satisfying the complete Euler equations can be of 
arbitrary magnitude. 

Notwithstanding the latter remarks, the results obtained, and above all, the almost 
identical equality to zero of the correlation functions demonstratewithoutanydoubtthecom- 
plexityofthemotionoftheliquidparticles. Evengreatercomplexitywillbeobservediftheplane 
parallel vertical nonstationary flow, induced e.g. by several vortex filaments, is taken as 
the primary flow (the filaments themselves are very complicated /1,2/) although even here the 
secondary flow does not affect the primary flow. It is therefore difficult even to imagine 
how great a chaos will result in the analogous situation for the general, three-dimensional 
case when nonlinear effects caused by mutual twisting of vortex tubes about each other begin 
to manifest themselves /8/. Another sourse of the chaotic behavior will, in any case, be 
the instability of the resulting flows with respect to the small, uncontrolled perturbations, 
their influence increasing, as a rule, with the evolution of the flow. Indeed, even in the 
last example when the initial profile of UA, over r is arbitrary, an arbitrarily large number 
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of the points of inflection form with increasing t 4 
The viscosity, no matter how small, exerts a smoothing effect /9,10/ by interfering with 

the unlimited growth of the derivatives. We shall show how it happens in a gap of height h= 
r+-r_ between two rotating cylinders at Re,=Q+r+s/v>i and Re,= P+hPlvg 1 where v is the 

kinematic viscosity. Analysis of the development of such a flow within the framework of the 
Navier-Stokes equations shows that at first the influence of the viscosity is practically 
nil. Later its effect manifests itself in two stages. In the first stage the distribution 
of u) becomes axisymmetric with ur=W(r) everywhere outside the thin laminary layer next to 
the walls,i.e. with the z-component of the momentum of each cylindrical layer r=const pre- 
served. The controlling parameter at this stage is the time of evolution of the first har- 
monic of the expansion (5.2) 

tl =i (3 I v)"(dG I dr)+ + 

The peripheral nonuniformity vanishes completely when (t/t#&l, although the higher harmonics 
decay more rapidly already when (t/tt)a>n-~. When (tItl)8~nP, the viscosity outside the bound- 
ary layers does not affect the harmonics up to and including the m-th order. The viscosity 
begins to affect the axisymmetric flow with w-W(r)#O strongly, at the time commensurable 
with t,= h'I(vh*) where h is a constant of the order of unity (li~2.4 for h/r+= 1 and h=n for 

h/r+=O). When t/t,>i, the velocity component weW(r). Since 

t, I tl = hP (dC2 1 dr)+‘k+P3+ - (Rep)‘/’ 

it follows that at Re,>)i the flow, after smoothing the peripheral inhomogeneity, is practic- 
ally unaffected by the viscosity for a very long time over almost the whole gap. 

The mechanism of the decay of to described above presupposes the stability of the flow. 
If the solution (5.1) is found to be unstable already at t<tl (which is perfectly possible) 
then its evolution will be different. 

The author thanks V.R. Kyznetsov for discussion and the advice and V.I. Iudovich for an 
estimate the research. 
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